Predmet: Mašinsko učenje 1
(17 -
EK466) Osnovne informacije
Matične organizacione jedinice predmeta
Program predmeta
Program se primenjuje od 22.08.2017.. Predmeti kojima je preduslov predmet Mašinsko učenje 1
Upoznavanje sa osnovnim konceptima i algoritmima mašinskog učenja uključujući njihove teorijske osnove, analizu i praktične primene. Studenti će imati mogućnost da razumeju i primene osnovne algoritme nadgledanog i nenadgledanog učenja uz primere dobre prakse i savete za primenu ovih algoritama. Studenti će moći da identifikuju probleme koji se rešavaju pristupima mašinskog učenja. Umeće da interpretiraju i analiziraju različite algoritme mašinskog učenja, implementiraju ih u programskom jeziku Python i evaluiraju njihove performanse. Naučiće da kombinuju algoritme i sastave tok obrada od postupaka za predobradu podataka, do evaluacije korišćenih pristupa. Sticanje neophodnih iskustava za prevazilaženje problema tokom primena algoritama (tačnost, računarski zahtevi, natprilagođenje, regularizacija). Uvod i osnovni pojmovi. Komponente sistema mašinskog učenja i osnovne vrste učenja. Različite vrste problema mašinskog učenja. Osnovni koncepti: funkcija cilja, natprilagođenje, regularizacija, evaluacija performansi, problem dimenzionalnosti, validacioni postupci, kompromis pristrasnost/varijansa. Nadgledano učenje (Bajesova teorija učenja, kvadratni klasifikatori, parametarska i neparametarska estimacija gustine verovatnoće (maksimalna verodostojnost i Bajesova estimacija, KDE, kNN), linearna i logistička regresija, linearne diskriminantne funkcije, neuralne mreže, metod vektora nosača). Nenadgledano učenje (k-means, hijerarhijska klasterizacija), redukcija dimenzionalnosti: PCA i LDA. Predavanja, računarske vežbe (Python i druga odgovarajuća programska okruženja), domaći zadaci, konsultacije, aktivno učenje, učenje kroz projekat i istraživanje, radionice.
|